Making Math Easy Reproducible Worksheets

Reproducible Worksheets for:

Division Made Easy

These worksheets practice math concepts explained in Division Made Easy (ISBN 0-7660-2511-X), Written by Rebecca Wingard-Nelson, Illustrated by Tom LaBaff.

Making Math Easy reproducible worksheets are designed to help teachers, parents, and tutors use the books in the Making Math Easy series in the classroom and home. Teachers, librarians, tutors, and parents are granted permission and encouraged to make photocopies of these worksheets.

These worksheets are reproducible for educational use only and are not for resale. 2006 © Enslow Publishers, Inc.

Visit www.enslow.com and search for the Making Math Easy series and download worksheets for the following titles:

Addition Make Easy
0-7660-2508-X
Division Made Easy
0-7660-2511-X

Multiplication Made Easy
0-7660-2510-6

Subtraction Made Easy
0-7660-2509-8

Fractions and Decimals Made Easy
0-7660-2513-6

Titles in this series can be purchased directly from:
Enslow Publishers, Inc.
40 Industrial Road, Box 398
Berkeley Heights, NJ 07922-0398
Phone: 1-800-398-2504
E-mail: customerservice@enslow.com
Web Page: http://www.enslow.com

What is Division? pages 6-7

What do you call a scared dinosaur? A nervous Rex.
How many groups of 5 can you made from the larger number in each equation?

\qquad
(1) $20 \div 5=$
(2) $5 \div 5=$
(3) $10 \div 5=$ \qquad (4) $20 \div 5=$ \qquad
(5) $15 \div 5=$ \qquad (6) $25 \div 5=$ \qquad
\qquad
(7) $20 \div 5=$
(8) $30 \div 5=$ \qquad
(9) $50 \div 5=$ \qquad (10) $40 \div 5=$ \qquad

What is Division? pages 6-7

What do you call a scared dinosaur? A nervous Rex.
How many groups of 5 can you made from the larger number in each equation?

(1) $20 \div 5=4$
(2) $5 \div 5=1$
(3) $10 \div 5=2$
(4) $20 \div 5=4$
(5) $15 \div 5=3$
(6) $25 \div 5=5$
(7) $20 \div 5=4$
(8) $30 \div 5=6$
9. $50 \div 5=10$
(10) $40 \div 5=8$

What is Division? pages 6-7

What do you call a scared dinosaur? A nervous Rex.
How many groups of 3 can you made from the larger number in each equation?

1
$15 \div 3=$ \qquad
(2) $9 \div 3=$
\qquad
(3)
$3 \div 3=$ \qquad
(4) $6 \div 3=$ \qquad
5
$12 \div 3=$ \qquad
(6) $30 \div 3=$ \qquad
\qquad
$18 \div 3=$
(8) $21 \div 3=$ \qquad
(9) $60 \div 3=$ \qquad 10) $90 \div 3=$ \qquad

What is Division? pages 6-7

What do you call a scared dinosaur? A nervous Rex.
How many groups of 3 can you made from the larger number in each equation?

(1)
$15 \div 3=5$
(2) $9 \div 3=3$
3
$3 \div 3=1$
(4) $6 \div 3=2$
5) $12 \div 3=4$
(6) $30 \div 3=10$
(7) $18 \div 3=6$
(8) $21 \div 3=7$
9. $60 \div 3=20$
10) $90 \div 3=30$

Why Divide? pages 8-9

How do you tell which end of a worm is the head? Tickle it in the middle and see which end laughs!

How many groups can you make by dividing the number on the left, by the number on the right?

\qquad
1
$6 \div 3=$ \qquad
2) $6 \div 3=$
\qquad
(3)
$10 \div 10=$
(4) $9 \div 3=$ \qquad
(5) $10 \div 5=$ \qquad (6) $5 \div 5=$ \qquad
\qquad (8) $5 \div 1=$ \qquad
9
$8 \div 1=$ \qquad
(10) $8 \div 4=$ \qquad

Why Divide? pages 8-9

How do you tell which end of a worm is the head? Tickle it in the middle and see which end laughs!

How many groups can you make by dividing the number on the left, by the number on the right?

1
$6 \div 3=2$
(2) $6 \div 3=2$
(3) $10 \div 10=1$
(4) $9 \div 3=3$
5) $10 \div 5=2$
(6) $5 \div 5=1$
(7) $3 \div 3=1$
${ }^{8} 5 \div 1=5$
9. $8 \div 1=8$
(10) $8 \div 4=2$

Why Divide? pages 8-9

How do you tell which end of a worm is the head? Tickle it in the middle and see which end laughs!

How many groups can you make by dividing the number on the left, by the number on the right?

(1) \qquad (2) $4 \div 2=$
3) $6 \div 2=$ \qquad
(4) $10 \div 5=$ \qquad
\qquad
5
$8 \div 2=$
(6) $4 \div 4=$ \qquad
(7) $5 \div 1=$ \qquad (8) $6 \div 3=$ \qquad
(9) $9 \div 3=$ \qquad (1) $9 \div 1=$ \qquad

Why Divide? pages 8-9

How do you tell which end of a worm is the head? Tickle it in the middle and see which end laughs!

How many groups can you make by dividing the number on the left, by the number on the right?

(1)
$4 \div 1=4$
(2) $4 \div 2=2$
(3) $6 \div 2=3$
(4) $10 \div 5=2$
(5)
$8 \div 2=4$
(6) $4 \div 4=1$
(7) $5 \div 1=5$
(8) $6 \div 3=2$
9. $9 \div 3=3$
(10) $9 \div 1=9$

Division and Multiplication page 12-13

Why did the computer squeak. Because someone stepped on its mouse!
Solve the problem in the left column. Use the inverse operation to solve the problem in the right column.

(1) \qquad 2) $16 \div 4=$ \qquad
(3)
$8 \times 2=$ \qquad (4) $16 \div 8=$ \qquad
\qquad
(5)
$5 \times 2=$
(6) $10 \div 5=$ \qquad
\qquad
$25 \div 5=$
(8) $5 \times 5=$ \qquad
(9) $9 \div 3=$ \qquad
10) $3 \times 3=$
\qquad

Division and Multiplication page12-13

Why did the computer squeak. Because someone stepped on its mouse!
Solve the problem in the left column. Use the inverse operation to solve the problem in the right column.

(1)
$4 \times 4=16$
(2) $16 \div 4=4$
(3)
$8 \times 2=16$
(4) $16 \div 8=2$
(5) $5 \times 2=10$
(6) $10 \div 5=2$
(7) $25 \div 5=5$
$9 \div 3=3$
10) $3 \times 3=9$
(8) $5 \times 5=25$

Division and Multiplication page 12-13

Why did the computer squeak. Because someone stepped on its mouse!
How many groups can you make by dividing the number on the left, by the number on the right?

\qquad

1) $3 \times 4=$
2) $12 \div 4=$
\qquad
3
$6 \times 3=$
(4) $18 \div 6=$ \qquad
5
$4 \times 2=$ \qquad
(6) $8 \div 4=$ \qquad
\qquad
(7) $9 \div 3=$
(8) $3 \times 3=$ \qquad
(9) $12 \div 4=$ \qquad (1) $3 \times 4=$ \qquad

Division and Multiplication page12-13

Why did the computer squeak. Because someone stepped on its mouse!
How many groups can you make by dividing the number on the left, by the number on the right?

1
$3 \times 4=12$
(2) $12 \div 4=3$
(3) $6 \times 3=18$
(4) $18 \div 6=3$
5) $4 \times 2=8$
(6) $8 \div 4=2$
(7) $9 \div 3=3$
(8) $3 \times 3=9$
9) $12 \div 4=3$
10) $3 \times 4=12$

Division Facts page14-15

What is useful when it is broken? An Egg!
Solve the problem using multiplication and division facts.

1
$3 \times 7=$ \qquad
(2) $21 \div 3=$ \qquad
3) $7 \times 3=$ \qquad
(4) $21 \div 7=$ \qquad
5) $2 \times 8=$ \qquad
(6) $8 \times 2=$ \qquad
\qquad
(7) $16 \div 2=$
8) $16 \div 8=$ \qquad

Division Facts page14-15

What is useful when it is broken? An Egg!
Solve the problem using multiplication and division facts.

1
$3 \times 7=21$
(2) $21 \div 3=7$
(3) $7 \times 3=21$
(4) $21 \div 7=3$
5) $2 \times 8=16$
(6) $8 \times 2=16$
(7) $16 \div 2=8$
(8) $16 \div 8=2$

Division Facts page14-15

Who takes longer to get ready for a trip--an elephant or a rooster? The elephant--it has to pack a big trunk, while the rooster takes only a comb.

Solve the problem using multiplication and division facts.

1
$2 \times 3=$ \qquad
(2) $6 \div 2=$
\qquad
(3)
$3 \times 2=$ \qquad
(4) $6 \div 3=$ \qquad
\qquad
5
$3 \times 5=$
(6) $5 \times 3=$ \qquad
(7) $15 \div 3=$ \qquad (8) $15 \div 5=$ \qquad

Division Facts page14-15

Who takes longer to get ready for a trip--an elephant or a rooster? The elephant--it has to pack a big trunk, while the rooster takes only a comb.

Solve the problem using multiplication and division facts.

(1)
$2 \times 3=6$
(2) $6 \div 2=3$
(3) $3 \times 2=6$ \qquad
5
$3 \times 5=15$
(6) $5 \times 3=15$
(8) $15 \div 5=3$
(4) $6 \div 3=2$

15

Zero and One page 16-17

A cowboy rode to an inn on Friday stayed two nights and left on Friday. How could that be? His horse's name was Friday.

Solve the equation using division.

(1)
$8 \div 1=$ \qquad
(2) $0 \div 4=$ \qquad
(3)
$2 \div 2=$ \qquad
(4) $3 \div 0=$ \qquad
(5) $2 \div 1=$ \qquad
(6) $10 \div 10=$ \qquad
(7) $8 \div 8=$ \qquad
(8) $0 \div 3=$
\qquad

Zero and One page 16-17

A cowboy rode to an inn on Friday stayed two nights and left on Friday. How could that be? His horse's name was Friday.

Solve the equation using division.

1
$8 \div 1=8$
(2) $0 \div 4=0$
3) $2 \div 2=1$
(4) $3 \div 0=0$
(5) $2 \div 1=2$
6) $10 \div 10=1$
\qquad
(7) $8 \div 8=1$
(8) $0 \div 3=0$

Zero and One page 16-17

What do you call a goat who robs banks? Billy the kid!
Solve the equation using division.

\qquad (2) $4 \div 4=$ \qquad
(3)
$5 \div 0=$ \qquad
(4) $0 \div 1=$ \qquad
5
$2 \div 2=$ \qquad
(6) $2 \div 0=$ \qquad
(7) $0 \div 8=$ \qquad
(8) $2 \div 2=$
\qquad

Zero and One page 16-17

What do you call a goat who robs banks? Billy the kid!
Solve the equation using division.

(1)
$3 \div 1=3$
(2) $4 \div 4=1$
(3)
$5 \div 0=0$
4) $0 \div 1=0$
\qquad
5) $2 \div 2=1$
(6) $2 \div 0=0$
(7) $0 \div 8=0$
(8) $2 \div 2=1$

Long Division pages 18-19

Tongue Twister: Three tree toads tied together tried to trot to town.
Solve the equation using long division.
(1)
n
$1 \longdiv { 1 7 }$ (2)
2) 46
(3)
$4 \longdiv { 4 0 }$
(5)
5) 75

6
3) 39
(7)
$6 \longdiv { 6 6 }$
(9)
$2 \longdiv { 3 6 }$
10
3 33
(11)
$5 \longdiv { 6 0 }$

4
$4 \longdiv { 5 2 }$

1) 32

12
$4 \longdiv { 4 8 }$

Long Division pages 18-19

Tongue Twister: Three tree toads tied together tried to trot to town.
Solve the equation using long division.

(1)
$1 \longdiv { 1 7 }$
(2)
$2 \longdiv { 2 3 }$
(3)
10
$4 \longdiv { 4 0 }$
(4)
13
$4 \longdiv { 5 2 }$
5
15
$5 \longdiv { 7 5 }$
6)
13
3) 39
(7)
$6 \longdiv { 1 1 }$
8) $\begin{array}{r}32 \\ 1 \longdiv { 3 2 }\end{array}$

9

(10) $\begin{array}{r}11 \\ 3 \longdiv { 3 3 }\end{array}$
(11)
$5 \longdiv { 1 2 }$
12
12
$4 \longdiv { 4 8 }$

Long Division pages 18-19

Tongue Twister: Three tree toads tied together tried to trot to town.
Solve the equation using long division.

(1)
$4 \longdiv { 1 2 }$
(2)
$2 \longdiv { 2 }$
(3)

1) 4
(7)
$3 \longdiv { 6 }$
(11)
$2 \longdiv { 9 8 }$

4
$4 \longdiv { 8 }$
8
$5 \longdiv { 1 5 }$

12
$4 \longdiv { 8 }$

Long Division pages 18-19

Tongue Twister: Three tree toads tied together tried to trot to town.
Solve the equation using long division.

(1)
$4 \longdiv { 3 }$
(2) $\quad 1 \begin{array}{r}1 \\ 2 \longdiv { 2 }\end{array}$
(3) $\begin{array}{r}4 \\ 1 \longdiv { 4 }\end{array}$
(4)
$4 \longdiv { 8 }$
(5)
$1 \longdiv { 8 }$
(6) $\quad 3 \longdiv { 1 }$
(7) $\begin{array}{r}2 \\ 3 \longdiv { 6 }\end{array}$
8
3
$5 \longdiv { 1 5 }$
(9) $\begin{array}{r}3 \\ 3 \longdiv { 9 }\end{array}$

10
$2 \longdiv { 3 }$
(11) $\begin{array}{r}49 \\ 2 \longdiv { 9 8 }\end{array}$
(12) $\begin{array}{r}2 \\ 4 \longdiv { 8 }\end{array}$

Dividing Greater Numbers pg 20-21

How do you stop a stinky fish from smelling? Hold its nose.
Solve the equation using long term division.

(1)

$1 \longdiv { 6 5 1 }$

(2)
$4 \longdiv { 9 7 6 }$
(3)
$5 \longdiv { 2 3 5 }$
(7)
$5 \longdiv { 3 9 5 }$
6
$7 \longdiv { 9 2 4 }$

4
$7 \longdiv { 4 3 4 }$

(8)

$6 \longdiv { 8 3 4 }$
(9)
$8 \longdiv { 9 6 0 }$
10
2) 116

Dividing Greater Numbers pg 20-21

How do you stop a stinky fish from smelling? Hold its nose.
Solve the equation using long term division.

(1)
651

1) 651
(2)
244
$4 \longdiv { 9 7 6 }$
(3)
$5 \longdiv { 2 3 5 }$
4
62
$7 \longdiv { 4 3 4 }$
(5)
76
$9 \longdiv { 6 8 4 }$
(6) $\begin{array}{r}132 \\ 7 \longdiv { 9 2 4 }\end{array}$
(7) $\begin{array}{r}79 \\ 5 \longdiv { 3 9 5 }\end{array}$
(8) $\begin{array}{r}139 \\ 6 \longdiv { 8 3 4 }\end{array}$

9
120
$8 \longdiv { 9 6 0 }$
(10) $\begin{array}{r}58 \\ 2 \longdiv { 1 1 6 }\end{array}$

Dividing Greater Numbers pg 20-21

How do you stop a stinky fish from smelling? Hold its nose.
Solve the equation using long term division.

(1)
$4 \longdiv { 1 4 4 }$
(2)
$8 \longdiv { 5 9 2 }$
(3)

1) 455

4
6) 906
8

1 519
(11)
$7 \longdiv { 2 8 7 }$

12
$4 \longdiv { 1 7 6 }$

Dividing Greater Numbers pg 20-21

How do you stop a stinky fish from smelling? Hold its nose.
Solve the equation using long term division.

1
36
$4 \longdiv { 1 4 4 }$
(2)
74
$8 \longdiv { 5 9 2 }$
(3)
455
$1 \longdiv { 4 5 5 }$
4
151
$6 \longdiv { 9 0 6 }$
5
37
$8 \longdiv { 2 9 6 }$
(6)
67
$9 \lcm{603}$
(7)

519

1) 519
8
301
$2 \longdiv { 6 0 2 }$

9

3 | 145 |
| ---: |
| 435 |

(10) $\begin{array}{r}79 \\ 7 \lcm{553}\end{array}$
(11) $\begin{array}{r}41 \\ 7 \lcm{287}\end{array}$

12
44
4) 176

What Are Remainders? pg 22-23

What goes Tick-tick, woof-woof? A watch dog.
Solve the equation using long term division. Write the remainder in the answer.
(1)
$7 \longdiv { 1 7 }$
(2)
$5 \longdiv { 3 9 }$
(3)

1) 32

(7)

$9) 41$

11
9) 35

4
2) 43
$7 \longdiv { 2 2 }$

12
3) 16

What Are Remainders? pg 22-23

What goes Tick-tick, woof-woof? A watch dog.
Solve the equation using long term division. Write the remainder in the answer.

1
$7 \longdiv { 1 7 } { } ^ { 2 r 3 }$
(2)
7 r 4
$5 \longdiv { 3 9 }$
(3)
32 r0

1) 32
4
21 r1
2) 43
5
$3 \longdiv { 2 0 } 4$
(6)
$2 \longdiv { 3 1 } { } ^ { 1 5 1 }$
(7)
$9 \longdiv { 4 1 }$
${ }^{8} \begin{gathered}3 r 1 \\ 7 \longdiv { 2 2 }\end{gathered}$

9
$8 \longdiv { 3 4 }$

10
$5 \longdiv { 5 8 }$
$7 \longdiv { 3 8 }$
(11)
$9 \longdiv { 3 5 }$
98
(12) $\begin{aligned} & \quad 5 r^{1} \\ & 3 \longdiv { 1 6 }\end{aligned}$

What Are Remainders? pg 22-23

What goes Tick-tick, woof-woof? A watch dog.
Solve the equation using long term division. Write the remainder in the answer.
(1)

4 27
(2)
$2) 11$
(3)
8) 21
(7)
$4 \longdiv { 3 3 }$
$8 \longdiv { 4 3 }$
(6)
$2) 29$
(11)
8) 46

4

1) 25
8
$9 \longdiv { 2 0 }$

12
$7 \longdiv { 4 3 }$

What Are Remainders? pg 22-23

What goes Tick-tick, woof-woof? A watch dog.
Solve the equation using long term division. Write the remainder in the answer.

1.
6 r3
$4 \longdiv { 2 7 }$
(2)
5 r1
2) 11
(3)
2 r5
$8 \longdiv { 2 1 }$
(4)
25 r0

1) 25
5
$8 \longdiv { 4 3 }$
2)

14 r1
2) 29
(7)
$4 \longdiv { 3 3 } { } ^ { 8 1 }$
(8)
2 r2
9 20
(9) $\begin{gathered}8 \mathrm{r} 1 \\ 3 \longdiv { 2 5 }\end{gathered}$

10
$8 \stackrel{2 \mathrm{r} 2}{18}$
(11) $\begin{aligned} & 5 r 6 \\ & 8 \longdiv { 4 6 }\end{aligned}$
(12) ${ }_{7}{ }_{7}^{6 r 1}$

The Largest Remainder pg 24-25

What is useful when it is broken? An Egg!
Solve the equation using long term division. Write the remainder in the answer.

1
$31 \div 8=$ \qquad
2) $32 \div 8=$
\qquad
(3) $20 \div 3=$ \qquad
4
$21 \div 3=$
\qquad
5
$41 \div 6=$ \qquad
(6) $42 \div 6=$ \qquad
(7) $39 \div 5=$ \qquad (8) $40 \div 5=$ \qquad
9
$27 \div 7=$

10
$28 \div 7=$ \qquad
(11) $38 \div 3=$ \qquad (12) $39 \div 3=$ \qquad

The Largest Remainder pg 24-25

What is useful when it is broken? An Egg!
Solve the equation using long term division. Write the remainder in the answer.

1
$31 \div 8=3 r 7$
(2) $32 \div 8=4 \mathrm{rO}$
(3) $20 \div 3=6 \mathrm{r} 2$
4) $21 \div 3=7 \mathrm{rO}$
(5)
$41 \div 6=6 r 5$
(6) $42 \div 6=7 \mathrm{rO}$
(7) $39 \div 5=7 r 4$
(8) $40 \div 5=8 \mathrm{rO}$
(9) $27 \div 7=3 r 6$
(10) $28 \div 7=4 \mathrm{rO}$
(11) $38 \div 3=12 \mathrm{r} 2$
(12)
$39 \div 3=13 \mathrm{ro}$

The Largest Remainder pg 24-25

How did the elephant hide on the pool table? He was wearing a green hat.
Solve the equation using long term division. Write the remainder in the answer.

\qquad 2) $14 \div 7=$ \qquad
(3) $29 \div 3=$ \qquad 4) $30 \div 3=$ \qquad
(5)
$17 \div 3=$
6) $18 \div 3=$ \qquad
(7) $17 \div 6=$ \qquad
8) $18 \div 6=$ \qquad
(9)
$35 \div 9=$ \qquad (10) $36 \div 9=$ \qquad
(11) $23 \div 6=$ \qquad (12) $24 \div 6=$ \qquad

The Largest Remainder pg 24-25

How did the elephant hide on the pool table? He was wearing a green hat.
Solve the equation using long term division. Write the remainder in the answer.

1
$31 \div 7=4 r 3$
(2) $14 \div 7=2 \mathrm{rO}$
(3) $29 \div 3=9 \mathrm{r} 2$
(4) $30 \div 3=10 \mathrm{rO}$
(5)
$17 \div 3=5 \mathrm{r} 2$
6 $18 \div 3=6 \mathrm{rO}$
(7) $17 \div 6=2 \mathrm{r} 5$
(8) $18 \div 6=3 \mathrm{rO}$
9)
$35 \div 9=3 r 8$
(10) $36 \div 9=4 \mathrm{rO}$
(11) $23 \div 6=3 r 5$
(12) $24 \div 6=4 \mathrm{rO}$

Divide by Greater Numbers pg 26-27

Tongue Twister: How much wood could a woodchuck chuck, if a woodchuck could chuck wood? It would chuck as much as a woodchuck could, if a woodchuck could chuck wood.

Solve the equation using long term division. Write the remainder in the answer.
(1)
18) 456
(4)
$1 6 5 \longdiv { 9 2 0 }$
(7)
$2 0 \longdiv { 7 4 8 }$
(2)
$1 2 7 \longdiv { 3 7 5 }$

5
69 155
(8)
$8 4 \longdiv { 1 9 0 }$

32 122
(6)
$7 5 \longdiv { 4 9 0 }$
(9)
$9 9 \longdiv { 5 6 5 }$

Divide by Greater Numbers pg 26-27

Tongue Twister: How much wood could a woodchuck chuck, if a woodchuck could chuck wood? It would chuck as much as a woodchuck could, if a woodchuck could chuck wood.

Solve the equation using long term division. Write the remainder in the answer.

(1)
$1 8 \longdiv { 4 5 6 }$
(2)

(3)
$3 2 \longdiv { 1 2 2 } \stackrel { 3 } { } \stackrel { r 2 6 } { }$
6
$6 r 40$
$7 5 \longdiv { 4 9 0 }$
9 5 r70
$9 9 \longdiv { 5 6 5 }$

Divide by Greater Numbers pg 26-27

Tongue Twister: How much wood could a woodchuck chuck, if a woodchuck could chuck wood? It would chuck as much as a woodchuck could, if a woodchuck could chuck wood.

Solve the equation using long term division. Write the remainder in the answer.
(1)

51 487

4
$2 5 4 \longdiv { 7 3 4 }$
(7)
$1 6 \longdiv { 1 8 7 }$
(2)
$3 5 \longdiv { 7 4 0 }$

5
$5 4 \longdiv { 2 0 3 }$
(8)
$1 7 \longdiv { 4 1 1 }$
$1 6 \longdiv { 6 3 9 }$
(6)
$8 1 \longdiv { 3 1 2 }$
(9)
$2 0 0 \longdiv { 9 3 7 }$

Divide by Greater Numbers pg 26-27

Tongue Twister: How much wood could a woodchuck chuck, if a woodchuck could chuck wood? It would chuck as much as a woodchuck could, if a woodchuck could chuck wood.

Solve the equation using long term division. Write the remainder in the answer.

(1)

(2)
$3 5 \longdiv { 7 4 0 }$
(3)

39 r15
 $1 6 \longdiv { 6 3 9 }$

(6)
$8 1 \longdiv { 3 1 2 }$
9

Power of Ten pages 28-29

What time is it when an elephant sits on a fence? Time to get a new fence.
Practice the activity by dividing the numbers.

1
$50 \div 10=$ \qquad
(2) $100 \div 10=$
\qquad
(3)
$150 \div 10=$ \qquad
4) $900 \div 10=$ \qquad
5) $900 \div 10=$ \qquad
(6) $10000 \div 100=$ \qquad
7) $15000 \div 100=$ \qquad
(8) $35000 \div 100=$ \qquad

Power of Ten pages 28-29

What time is it when an elephant sits on a fence? Time to get a new fence.
Practice the activity by dividing the numbers.

1
$50 \div 10=5$
(2) $100 \div 10=10$
(3) $150 \div 10=15$
(4) $900 \div 10=90$
5) $900 \div 10=90$
6) $10000 \div 100=100$
7) $15000 \div 100=150$
8) $35000 \div 100=350$

Power of Ten pages 28-29

Which is the longest word in the dictionary? "Smiles". Because there is a mile between each "s"!

Practice the activity by dividing the numbers.

1.
$90 \div 10=$ \qquad
2) $500 \div 100=$
\qquad
3
$300 \div 10=$ \qquad
(4) $700 \div 100=$ \qquad
(5) $900 \div 10=$ \qquad (6) $9000 \div 10=$ \qquad
(7) $15000 \div 100=$ \qquad
(8) $30000 \div 100=$ \qquad

Power of Ten pages 28-29

Which is the longest word in the dictionary? "Smiles". Because there is a mile between each "s"!

Practice the activity by dividing the numbers.

(1) $90 \div 10=9$
(2) $500 \div 100=5$
(3) $300 \div 10=30$
(4) $700 \div 100=7$
(5) $900 \div 10=90$
(6) $9000 \div 10=900$
(7) $15000 \div 100=150$
(8) $30000 \div 100=300$

Multiples of Ten pages 30-31

When do doctors get angry? When they run out of patients!
Practice the activity by dividing the numbers.

1 \qquad (2) $2800 \div 70=$ \qquad
(3)
$2800 \div 700=$ \qquad (4) $28000 \div 7000=$ \qquad
5
$3200 \div 8=$ \qquad
(6) $3200 \div 80=$ \qquad
7
$3200 \div 800=$ \qquad
(8) $32000 \div 8=$ \qquad

Multiples of Ten pages 30-31

When do doctors get angry? When they run out of patients!
Practice the activity by dividing the numbers.

1
$28 \div 7=4$
(2) $2800 \div 70=40$
(3)
$2800 \div 700=4$
4) $28000 \div 7000=4$

5
$3200 \div 8=400$
(6) $3200 \div 80=40$
$3200 \div 800=4$
(8) $32000 \div 8=4000$

Multiples of Ten pages 30-31

When do doctors get angry? When they run out of patients!
Practice the activity by dividing the numbers.

1
$420 \div 60=$ \qquad
(2) $7200 \div 90=$
\qquad
(3)
$6000 \div 60=$ \qquad (4) $1,000 \div 100=$ \qquad

5
$800 \div 8=$ \qquad (6) $270 \div 9=$ \qquad
7) $32000 \div 80=$ \qquad
(8) $700 \div 50=$ \qquad

Multiples of Ten pages 30-31

When do doctors get angry? When they run out of patients!
Practice the activity by dividing the numbers.

1
$420 \div 60=7$
(2) $7200 \div 90=80$
3) $6000 \div 60=100$
4) $1,000 \div 100=10$
5) $800 \div 8=100$
(6) $270 \div 9=30$
$32000 \div 80=400$
(8) $700 \div 50=14$

Division and Estimation pages 32-33

Did you hear the one about the skunk? It stunk!
Estimate the answer in each equation in the left column, then answer the equation in the right column. Was your estimate close to the exact answer?

(1)
$53 \div 7=$
2) $49 \div 7=$
4) $60 \div 4=$ \qquad
(5) $51 \div 2=$ \qquad
(6) $50 \div 2=$ \qquad
(7) $50 \div 3=$ \qquad (8) $48 \div 3=$ \qquad

Division and Estimation pages 32-33

Did you hear the one about the skunk? It stunk!
Estimate the answer in each equation in the left column, then answer the equation in the right column. Was your estimate close to the exact answer?

1
$53 \div 7=7 r 4$
(2) $49 \div 7=7 \mathrm{rO}$
3) $61 \div 4=15 \mathrm{r} 1$
(4) $60 \div 4=15 \mathrm{rO}$
(5) $51 \div 2=25 \mathrm{r} 1$

6 $50 \div 2=25 \mathrm{rO}$
(7) $50 \div 3=16 \mathrm{r} 2$

$$
50 \div 3=16 \mathrm{r} 2
$$

(8) $48 \div 3=16 \mathrm{rO}$

Division and Estimation pages 32-33

Did you hear the one about the skunk? It stunk!
Estimate the answer in each equation in the left column, then answer the equation in the right column. Was your estimate close to the exact answer?

1
$100 \div 7=$ \qquad
2) $98 \div 7=$
\qquad
(3) $52 \div 5=$ \qquad 4) $50 \div 5=$ \qquad
5) $59 \div 6=$ \qquad (6) $60 \div 6=$ \qquad
(7) $90 \div 8=$ \qquad 8) $88 \div 8=$ \qquad

Division and Estimation pages 32-33

Did you hear the one about the skunk? It stunk!
Estimate the answer in each equation in the left column, then answer the equation in the right column. Was your estimate close to the exact answer?

1
$100 \div 7=14 \mathrm{r} 2$
3) $52 \div 5=10 \mathrm{r} 2$
5) $59 \div 6=9 r 5$
(7) $90 \div 8=11 \mathrm{r} 2$
(2) $98 \div 7=14 \mathrm{rO}$
4) $50 \div 5=10 \mathrm{rO}$
6) $60 \div 6=10 \mathrm{rO}$
(8) $88 \div 8=11 \mathrm{rO}$

Checking Your Answer page 36-37

What has many eyes but cannot see? A potato!
Use multiplication and division to solve each equation. Are the equations on the left and right opposite operations?

\qquad
1.
$4 \times 7=$
2) $28 \div 7=$ \qquad
(3) $10.6 \times 5=$ \qquad
4. $53 \div 5=$
\qquad
(5) $11.5 \times 2=$
6) $23 \div 2=$ \qquad

Checking Your Answer page 36-37

What has many eyes but cannot see? A potato!
Use multiplication and division to solve each equation. Are the equations on the left and right opposite operations?

(1)
$4 \times 7=28$
(2) $28 \div 7=4$
(3) $10.6 \times 5=53$
(4) $53 \div 5=10.6$
(5) $11.5 \times 2=23$
(6) $23 \div 2=11.5$

Checking Your Answer page 36-37

What has many eyes but cannot see? A potato!
Use multiplication and division to solve each equation. Are the equations on the left and right opposite operations?

(1) $11.2 \times 5=$ \qquad (2) $56 \div 5=$ \qquad
$18.75 \times 4=$ \qquad
4. $75 \div 4=$ \qquad
(5) $23.5 \times 2=$ \qquad
(6) $47 \div 2=$ \qquad

Checking Your Answer page 36-37

What has many eyes but cannot see? A potato!
Use multiplication and division to solve each equation. Are the equations on the left and right opposite operations?

(1) $11.2 \times 5=56$
(2) $56 \div 5=11.2$
(3) $18.75 \times 4=75$
(4) $75 \div 4=18.75$
(5) $23.5 \times 2=47$
(6) $47 \div 2=23.5$

